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UNCONDITIONALLY STABLE DIFFUSION-ACCELERATION
OF THE TRANSPORT EQUATION

Edward W, Larsen
University of California
Los Alamos National Laboratory
P. 0. Box 1663
Los Alamos, New Mexico 87545

The standard iterative procedure for solving fixed-source discrete-ordinates
problems converges very slowly for problems in optically large regions with
scattering ratios c near unity. The diffusion-synthetic acceleration method
has been proposed to make use of the fact that for this class of problems,
the diffusion equation is often an accurate spproximation tn the transport
equation. However, stability difficulties have historically hampered the
implementation of this method for general transport differencing schemes.

in this article we discuss a recently developed procedure for obtaining
unconditicnally stable diffusion-synthetic acceleration methods for various
transport differencing schemes. We motivate the analysis by first dis-
cussing the exact transport equation; then we illustrate the procedure by
deriving a new stahle acceleration method for the linear discontinuous
transport differencing scheme. We also provide some numerical results.



UNCONDITIONALLY STABLE DIFFUSION-ACCELERATION
OF THE TRANSPORT EQUATION

I. INTRODUCTION

The standard power method for iterastively solving the neutral parcicle
transport equation has the following well-known physical interpretation.
With a starting guess of zero, the n-th iterate is the flux consistiug

of all particles which have undexvgone up to n collisjons. For transport
problems in optically large regions with scsttering ratios near unity,
most of the particles undergo a large number of collisions and the power
method converges very slowly. However, for this same class of problems,
the transport solution is often well approximated by the solution of the
standard diffusion equation. The "diffusion-synthetic" acceleration
method?™7 has been proposed to exploit this fact by alternating tramsport
and diffusion calculstions, but it is only fairly recently that numerical
stability problems? have been overcome and that a comnon procedure for

developing stable methods for fairly general transport differeacing schemes
hes been formulated.3"7

In this article we discuss the diffusion-synthetic acceleration method, first
from the point of view of the exact traunsport equation (Sec. II), next from

the point of view of the discretized transport equation, with emphasis placed
on & new and simpler acceleration method for the linear discontinuous spatial
differencing scheme®’® (Sec. III), and then from the point of view of numerical
results (Sec. IV). For simplicity we restrict our attention to fixed source
problems for the one-group treznsport equation with isotropic scattering. We
briefly discuss extensions to multigroup srisotropic transport in other
geometries in Sec. V.

I1. EXACT TRANSPORT EQUATION
We wish to solve the equation

1
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At this point we shall not specify the spatial domain or the boundary con-
ditions. The standard power iteration method for solving Eq. (2.1) is

ined by
24+Y
" ?% + e c¢§ + S(x) (2.2)
2"'1 = l J-l 2"'& d ' (2 3)
% 2 1 Y (VAN .

vhere Qg, the initial guess, is often chusen to be zero. To determine the
convergence properties of this method we define

s (2.4)

" =¢ - ¢ ’ (25)

as the difference between successive iterates of Eqs. (2.2) and (2.3). The

rate at which v’** and 02 tend to zero is the rate of convergence of the
power method (2.2), (2.3).

By subtracting two of the equation (2.2) and (2.3) for successive values of
2, we obtain

+h
QY! + Wﬁ+5 = c¢£ ,

M ax (2.6a)

o2y Wy g (2.6b)

To determine the convergence rate, we neek eigenvalues w and eigenfunctions
of this method of the form

2 1Ax

02 = (W) e , ~mCAD> e | (2.7)
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for which Eqs. (2.6) become

f(,N{AMp + 1) =, (2.9)
1 1
w=2 ffa . (2.10)
-1
Hence,
c
f(u,A) = T+ i (2.11)
and
1
w = % '—"—B—Z-—i au . (2.12)
=11+ A%

The spectral radius of the method is then

8pr T sup W = ¢, (2.13)
A

which is attained for A = 0. Thus, for A ~ 0 and ¢ ~ 1 (whickh corresponds
physically to an optically large system with a wcattering ratio near unity),
the spectral radius is close to one, and the power iteration method con-
verges very slowly.

To sccelerate this iteration method, we shall keep £q. (2.2) but r-place
Eq. {(2.3) by a formula which treats the A ~ 0 modes more accurately. To
reformulate this idea, we rewrite Eqs. (2.8) and (2.11) as

WY o1 - i A L) (2.14)

Thus 1f Pn(“) ie the m-th Legendre polynoniasl, we have
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In particular, W£+k is nearly a linear function of y. Thus, to better treat
the A ~ 0 modes, we shall roplace Eq. (2.3) by an equation which computes

2+1 |22

9 exactly if ¥ is a linear function of p.

To do this, we take the zero-th and first spatial moments of Eq. (2.2) to
obtain

:x 02+¥ ¢2+¥ = c¢§ +s , (2.16a)
% %; ¢2+5 ; g ¢£+§ ¢2+§ ’ (2.16b)
where
, 1
%, =3 J P (M) (x,p) dp . (2.17)
-1

Upon convergence, Eqs. (2.16) become
d =
ahtQ-c)e, =5, (2.18a)

L ppt e =0, (2. 18b)
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where the converged quantities are indicated without iteration superscripts.

Now let ue define two equations for ¢: 1 and ¢£+1
Lol a0 =s (2.19a)
2d o4y 14 R4 241
3ax?®2 tambh t4H <0 - (2.19%)

We note that Eq. (2.19a) is the standard balance equation. For the eigen-
functions of this iteration scheme, the first (unaccelerated) term in Eg.
(2.19b) is - by Lq. (2.15) - 0(A%). while the second and third (accelerated)



terms are 0(A). Thus, Eqs. (2.19) can be expected to treat the A ~ 0 modes

very accurately. Additionally, we see that if ¢2+

f2+%

function of p, than ¢2

¢§*1 exactly.

To proceed, we write

and we subtract Eqs. (2.16) from (2.19) to get

%

is8 a linear

= 0 and Eqs. (2.19) can be solved for ¢§+1 and

d 2+1 2+1
ax fl + (1 - ¢) fo
14 241 2+1 _
3axfo *%H =0

Eliminating f§+1, we get an equation only for

= C(Oo - Og) )

2+

scheme, using this equation, is defined by
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The eigenvalues and eigenfunctions of this method can be computed just as

before, with the resuit

= ’g) ’

vk

0

W)

(2.

(2.

(2.

The full iteration

(2.

(2.

(2.

(.

’ (2.

20)

21a)

21b)

23a)

23b)

23¢)

234)

24)



whevre equality holds for ¢ = 1. A numerical search gives
spr < ¢ (0.23) , (2.25)

and thus the spectral radius is less than 1/4 for all values of ¢ < 1. For
¢ = 1, the plots w(A) for the unaccelerated [Eq. (2.12)] and accelerated
[Eq. (2.24)] methods are displayed in Figure 1. We see that the accelerated
method treats not only the A = 0 mode exactly, as it was designed to do,

but in fact it treats all the modes, for 0 < A < ®, more accurately than the
unaccelerated method.

The diffusion~synthetic acceleration method of Eqs. (2.23) [together with

its spectral radius (2.25)] has been known for some time, and was originally
derived in a substantially different way.! The derivation of unconditionally
stable discretized diftusion synthetic methods however was an unsolved prob-
lem for several years®? and has only been accomplished recently.® The advan-
tage of the analysis presented above is that, starting from the exact trans-
port equation, we systematically derived the exact diffusion-synthetic
acceleration method; in a similar maniner, if we start with the discretized
trapsport equation and follow the above procedure, basically line-for-line,
we can derive a discretized diffusion-synthetic acceleration method which

is, for all of the transport differencing schemes we have considered,
unconditionally stable.®’? In the next section we carry out this procedure
for the linear discontinuous differencing scheme.

II1. LINEAR DISCONTINUOUS SCHEME

The linear discontinuous scheme for spatially discretizing the discrete-
ordinstes equations is based on a linear representation for the angular
flux within each cell,

WO =, v oex) B, (3.1)
k

This equation holds in the k-th spatial rell xk-h < x < xk*&, with midpoint
x, = (xk-& + xk+5)/2 and width hk = xH¥ - xk_&.

the discrete-ordinates directicn Hy' the corresponding weight is W normalized

The subscript m refers to

n
so that 2 wo= 1. Equation (3.1) holds not onlv within the k-th cell, but
1

also on the right edge for M > 0 and on the left edge for Ha < 0. Thus if

""n'uk = ¢.(Xu~), then
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For a constant source § = S, , the linear discontinuous wethod is explicitly

defined for the k-th cell by

v

Mo g4y gy 2y _ 2
B Yo,k 7 Yak-y) T Onfme T Oskfox Sk (3.
EEE ( 2+% 244 2*5) +0 r o (2 (3
B Yok’ Yo,k 2 ¥y Tkbwe = %skCok '
1+ a 1 -« o
24y _ 2+ mk, £% _ sk .2
Yok = (——) ¥ Jk+y + ( 2 ) *u,k"ﬁ Ynk Ork cOk (3.
These are three equations for three unknowns, ¢2+k’ &%;5, and either

wl 5 or wz 5 . Equations (3.2a) and (3.2b) are the zero-th and first
m, k+} k-

order spatial balance equations, into which we have introduced E¢. (3.1).

Equation (3.2c) follows from introducing

2+ 2+
R , w0,
m,k+}
iy - (3
mh ¢2+§ - wl*\ <o )
mk m,k-% ' H ’
into Eq. (3.2b), rearrunging, and defining
o.h 'p
- TK
LI . (3.

3¢ IoThk/p-|

Equations (3.2) constitute the discretized version of thc transport
equation (2.2), with the total and scattering cross sections 0, and O
written explicitly. The unaccelerated method is based on the ?ollowigg
discrete form of Eq. (2.3):

2a)

2b)

2c)

3)

4)
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241 _ By
’Ok = ’Ok = 5 ‘l-‘nk Un ’ (3 -58)

N
2+l _ LRy _ 244
C0k - (ok - z lenk wn . (3 - Sb)

The spectral radius for this iteration method is found by determ..ing eigen-
iAx iAx

g 21,2 Mk oL g-1 _ , % k
functions of the form o, box = W™ e R COk COk = (w)~ ue for
aystems ip which Org? oSk’ and hk are constants independent of k. The eigen-
valu. w has a complicated form which (just as in Sec. II) equals ¢ = 0g/0;
for A = 0 and monotonically tends to zers as A+. Thus, as beiore, convergence
will be very slow for ¢ ~ 1 and A ~ 0.

To derive the acceleration equations, which will replace Egs. (3.5), we
first define Py Yai? and Bnk as

N
P = Z Hlokm (3.6a)
1
a.k = 3 pkp- + Ymk , (3.6b)
Mo mk = Py * Bmk ’ (3.6¢)

Because an is antisymmetric, i.e.,

k

Wy = 7 Hy % =7 %y S

then Yok and ﬂnk have the properties

N

E Pn(u') Yoils = 0 R n=20,1, 2 |, (3.8a)
A1

N

z P (W) Byuw =0 , n=0,1 . (3.8b)
- JRD




The procedure which we use is patterned directly on the method presented

in Sec. II for deriving the acceleration equations (2.23) from the single
equation (2.2). Our starting point here however is not Eq. (2.z), but
rather Eqs. (3.2). We begin by taking the zero-th and first angular moments

N N
of Eqs. (3.2), i.e., by operating by 2 (*) w_ and b3 pm(-) w . Thi-
m =1 m=1
results in the following six equations:
1 24y 2+h - Ly _ £+5
B (91,ken *1,k-%) ¥ Orx = 9si) ¥y 05 (g™ S + 5y » (3:59)
2 2th 24y l_h oty 24y o4h
3hk (02,k+k ¢2 k_h k (¢0'k+% ¢o,k_¥) + k¢ ? (3:9b)
3 2+% 2+% 2+Y 2ty 2.’%
he 1, keh’ 1,05 7 2 )t O 7 %) Lo = 9siCox 7 Cox )
(3.9¢)
2 2+ 2+% 2+ 1 2+% 2+% z+y 2+% _
he 92,key" $2,k-5 20 b @o,i” 0,64 7 200t Orbuc T O

(3.94)

ooy 1 04y o+ 3 ey gy 1 2% " 22 Y
¢0k (00 k+§ t ¢0,k'¥) + 2 Pk(¢1’k+5 ¢1’k_s) r 2 LY(¢k+§ wk_a) ’

(3.9e)

24y _ 2+4 2+ 24N 2+Y A2 Y A2Y
%k ~ (°1 ke T O k) 2 P8 kg™ %0, k30 * L“(*k+5 Wy -3,

Sk C

) (3.9£)
Opy Ok

ko
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Here we have defined

N
bk = mz-;l E(ug) d (3.10a)
Cok = mz:an(um) Eaia (3.10b)
N
ka = Z Ynkwnkwm , (3.10c)
m =1

etc. Now we define acceleration equations in the following way:

1, 241 841 241 _

By T O1ky) T Opy t Og) e =S (3.11a)
k

PIENPON 20 TN 2 Y 1_ 241  2+1 241 _

3h, 92,10y 92,630 * 35, %0,key” %0,k T Oty <0 (3.11b)
3 £2+1 2+1 2+1 . 2+1

2 Aty 24y A+ 1, 2+ 21 001, 241 _

b (ke * 92 k-p = 2050+ hk(’o,k+s’ ®oiy T2 s roglyy =0,

(3.11d)

A+1 1 . 2+1 i1 241 2+1 244 L+

]
Pel®) ko - $1.x-4) * 2 Ly(pgy = ¥y

Niw

%o 3 (Qo,k+h ' q'o,lw'.) *

(3.1ie)
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2+1 2+1 241 2+1 1 2+% R+k
e = 204 keht ’1 k= 5) + 3Py (9 kel ¥ key) t 7 IBGU - ¥ y)

Isk L2+1
¢

-p . (3.11fF)
k c Cri Ok

241 241 241
.nk 4 ’n k+5’ cnk ’
n =0 and 1. They were defined by slterinrg the superscripts in Eqs. (3. 9) in

a manner that is consistent with Eqs. (2.15) and (3.8). Specifically, for the
eigenfunctions of this itcration scheme and for small A the accelerated terms
in Eqs. (3.11b, d, e, and f) are respectively 0(A), 0(A2), at worst 0(1),

and O(A), while the unaccelerated terms are respectively 0(A3), 0(A%), 0(A2),
and O(Az) Thus in these four equations the unaccelerated terms are, for
snall A, negligable compared to the accelerated terms. 1In Eqs. (3.11a and c),
all of the teims are acrelerated. In these two equations one cannot compare
cthe magnitude of the various terms with respect to A because o, - .nd
Sk cun, in principle, have values which vary from zero to 1nfix¥ty

Tuese are six equacions for the six quantities:

Equations (3.11) satisfy the property, enuciated in Sec. II, that if ¢ is
linear function of Y then all of the terms with 2+} superscripts vani

and the six unknowns®can be determined exactly. The acceleration method
based on Eqs. (3.11) has been coded, tested, and reported elsewhere®’’; we
shall refer tn it ar method A. In the following we discuss in detail a
closely related method (referred to as method B) which (i) does not satisfy
the above property, (ii) is computationally simpler than method A, snd (iii)
performs for most problems about as wel'’ as method A. In Sec. IV we present
numerical results to compare the two methods.

Method B is based on the observation that if the eigenfunctions of any
iteration scheme satinfy Eq. (2.15) for small A, then the accelerated term
on the left side of Eq. (3.11e') and the first accelerated term on ihe ri!ht
side are 0(1), while the second accelerated term on the right side is 0(2%)
Thus this latter term should be negligable when compared to the others for
small A, and one ought to be able to treat it ass unaccelerated. In other
words, one ought to be able to replace Eq. (3.11le) by

141 _ £+1 !ﬂ l+l. h\ 24y 1oy

(3.11e')

This metbod has been ccded; ve have found that for small spatial cells the
spectral radius is (experimentally) identicel to that of wethod A, but as
the spatisl cells increase in width, the spectral radiu. tends to c. Thus,

12



the nevw method is stable, but it does not accelerste effectively for large
spatial cells. This unfortunate behavior of the spectral radius as »
function of the cell width could not have been predicted from the analysis
of the exact acceleration equations in Sec. II. However, it can be over-
come by adopting the following strategy.

The purpose of any acceleration method is to obtain accelerated values of
Q::l and {::l. By Eqs. (3.11e¢) [or (3.11e')] and (3.11f), these quantities
are given in terms of accelerated cell-edge scalar fluxes and currents.

An acceleration method which accelerstes effectively for asll spatial cell
widths is defined as follows. We take Eqs. (3.11c,b,c,d,e’', and f) and
solve these for the accele-ated cell-edge scala: fluxes and curreats; then
we use these results in Egs. (3.11e and f) to obtain the accelerated cell-

sverage quantities 0::1 and L::I. In other words, we usc Eq. (3.1le’)

in the first half of the calculcstion and Eq. (3.11) in the second half.

If we follow thir nrocedure, which we define as method B {or, if we use

Eq. (3.11) in both halves, which is method A] we obtain an acceleration

method which accelerates effectively for all cell widths. If we use Eq.
(3.11e') in both halves, we obtain an gcceleration method which only accele-
rates effectively Zor small cell widths. There is a computational simplifi-
cation which occurs however in using Eq. (3.11e') rather than Eq. (3.11e) in

the first half of the calculation, and this simplificetion may be crucial in
multidimensional proh’ems. In the following, we carry out the algebraic mani-
pulations described above for method B so that it is recast in a computationally

useful form. We point out, »s a detail, that for method B, the symbol 0:;1 in
Eqs. (3.11a, 4, and e¢') should be replaced by some other symbol, such as
0::3/6; however, for brevity, we shall nct do this here.
The first step is to continue following the procedure in Sec. I] and sub-
tract Eqs. (3.9) from Eqs. (3.11a,b,c,d,e'. and f). Defining
i ST S B (3.12a)
AR S I I (3.12b)
wve get
1, A 2+1 - i+1 Qe 2 a 1-
hk(fl.h 1,k YO - 0g) fop = g, (4,7 - 4 (3.132)

13



1

2+1 £+1

2+1

3, o,y " fou-y) T Omfak <0 o (3.13b)
321 0 Y 13 i 241 p+y
b, (f) ey * ff,k-k fix ) * (g - 0g) 85, = 0 (L5 - ;Ok ’
(3.13¢)
1, 241 " 241 _
h (g yoy? f2 2671) + osyy =0 (3.134)
241 +1 (241
fox =2 fﬂ o,k+y * fo,k-y) (3.13e)
2+1 1 +1 £+1 1"1 +1
e © i(fl ey b py) ? 0,k+y " fz k=%
°su z+1 C 2 (3.13£)
Pk o Oy o - Lok :

We note that for method A, Eg.

(3.13e) would contsin an extra term on the

right side; this term would, in the ensuing manipulations, produce extra

algebraic compl: cations.

Thus method B, the subject of this article, is

algebraically sicpler than method A.

To proceed, we solve Egs.

(3.13c) and (3.13f) for f‘+l and g£+1 in

terms of the unknown cell-edge quantities and known gell-nvergse quantities

to obtain

241 _ 1, 401 (241

fix =2 Uf pay * 11 key)
(3.14)

1 + (241 g+l
r (o) 2 On " Bk)(fl o,.k+y ~ fo N ) " %ox - Low
X O 8Py 0, * (iqyhy) (Oqy - Og,)
21 2t 244

te1 30 e Mo ey~ To ko) * %l My 7 6 gy - Loy

Ok 6Py Ogy * (aTkhkj(oTk W
(3.1%)
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Next, we use Eqs. (3.13e) and (3.14) to eliminate fﬁ;l and ff;l from (3.13a
and b). To simplify the notation, we define

p. =14k P i) Ok - %) (3.16a)
» .
k305, 2 | 6POgy *+ (oph k)(° - Ogy)
Rk © %k " sk (3.16b)
2+§
24y _ pkOSk(oTkhk)(c - Lox
Rk ~ 6p, 0., + (0 Y(o.. - 0..) ° (3.16c¢)
k’sk TPk Ok = sk
2+% l g [}
Then we obtain
Lo 2+1 f2+1 . Dk(fzn A )+ R, (3.178)
2 k+§ k-l. hk k"'ﬁ 0 k-4 ’ .
2+1 441 1 241, 4]
2“1 k-h  F1een) =7 7 ORPk oL ket fokey) t Rl (3.18a)

Adding and subtracting these equations, we get

A Du (241 fﬁ b (e 2]

1, kth * (€0 xey - o,k+k ¥ To,k-y) * R T Py

(3.19;

Now we take the equation for f and replace k by k+l to obtain a second

2+1

2+1 1,k-%

equations for fl k+\; equating these expressions and rearrang.ng, we obtain,
’

finally,

15



R SR 241 Dy a+1 241

k1 - f + X (s - f
B, (f0,k¢3/2 0,k+y) B, (£, x+y = fo k-3

1 2+1 241 +1 +1
* %1%, k+1Bke1 o ko372 ¥ To ken) * °Rkhk(f§,k+s * fg,k-s)l

= (e ,+P) - (R, -R) , (3.20)

which is a discretized diffusion equation, analogous to Eq. (2.23c).
. 241
To complete the iteration scheme, we must obtain expressions for ’0&

and Cg;l. Subtracting Eq. (3.9e) from Eq. (3.11e), and using Eqs. (3.12a)
and (3.17a), ve get

Le1 _ GAe 1 4] 2+1 3 21 24
¢0k = ¢0k + 2(f(2)’k'f§ + fo'k-s) + 2 pk(fl,k"‘ﬁ fl,k"a)
= o2th 1_3 2+1 241
= ‘0& t13 "% pk(oRk hki(fo,kﬂf fo’k_“) + 3pkpk (3.21a)

and from Eqs. (3.12b) and (3.15), we obtain

+1 +1 - 2y _ R
s 3pkoTk(f;Jk+h fg,k-§) *+ o5 (ophy - 60 ) (Lo, " - Ly )
ok Ok 6pk°Sk + aTkhk(oTk - OSk)

(3.21b)

The derivation of the acceleration method is now basically complete. First,
we perform the transport sweep of Eqas. (3.2). [This is analogous
to solving Eq. (2.23a).] Next we introduce these results into Eqs. (3.5)

to obtain Ql+5 and {£+~. [This is analogcus to Eq. (2.23b).] Then we
Ok Ck

solve Eqes. (3.16) and (3.20). (This is analogous to solving Eq. (2.23c).]
Finally, we obtain 0::1 and C::l from Eqs. (3.21). |[These equations are

analogous to Eq. (2.234).)

16



We have not analytically computed the spectral radius of this method for
infinite medium problems., However, we have done this for method A and have
obtained the upper bound

spr < ¢ (0.300) . (3.22)

Moreover, numerical results show that methods A and B generally require almost
the same number of iterations to obtain any prescribed accuracy, and so we
believe that the bound (3.22) gives a good approximation to the spectral radius
for method B. Thus, the method is unconditionally stable and accelerates
effectively for all size of spatial meshes.

Two subjects remain to be discussed before the acceleration method derived
above can be implemented. First, we must derive boundary conditions fgr Eq.
(6 20), and second we must deacrlbe how to select the initial values ¢Ok and

cOk

The subject of boundary conditions for Eq. (3.20) is important. In
calculations, we have observed that with any improper choice the acceleration
method becomes unstable for large spatial meshes, but with a correct choice
the method remains unconditionally stable.’” Let us suppose that at the left
bcundary, xx, we have a prescribed incident flux, x o for Hy > 9. If, for

the £-th iteration, the full angular flux is a linear function of M
this point, then we can write

Taking the incoming partial current, we get

2 Vata i Z IR AR L et (3.24)

v

We require accelerated flux and current to also satisfy this equation.
Subtracting the two equations and using Eq. (3.12a), we obtain

£+l 1 _f2+1
[ Z ] R I (3.25)

41 from Eq. (3.25) and obtain
1 "n 1
a (boundary) condition explicitly relating f f‘ 3/

Finally, we use Eq. (3.19) to eliminate f
The boundary

condition at the right edge of the system, as» wall an the trentnent of
reflecting and periodic boundary conditions, are all handled analogously.

17



The determination of initial values for ¢g and {o is less crucial
because the acceleration method is linear and its convergence rate is in-
dependent of the initial choice. Nevertheless, an accurate initial choice
can obviously reduce the number of iterations for any given problem and
thereby reduce the computationsl effort. Our experience has shown that
the following procedure works very effectively. In Eqs. (3.11), delete

all terms w._.h "2+%" superscripts, and in the remaining terms set £ = -1.

This gives Bix equations which can be collapsed, as above, into a single

(diffusion) equation for Qg Kty and auxilliary equations to determine ¢gk
’

and Cok. Boundary conditions for the diffusion equation are determined,
for egample, by setting 2+% = 0 in Eq. (3.24). The details are straight-
forward and analogous to the manipulations described above.

IV. NUMERICAL RESULTS

Here we shall consider a model shielding problem to illustrate the statements,
made in the previous section, regarding the estimated spectral radius and
stability of methods A and B. The physical syastem consists of four regions.
From left to right, the first region is 12 cm thick with o, = 3.333,

og = 3.3136, and S = 1.0; the second region is 3 cm thick with o, = 3.333,
Og = 3.3136, and S = 0.0; tue third region is 6 cm thick with o, = 1.333,
og = 1.1077, and § = 0.0; the fourth region is 9 cm thick with ET = 3.333,

a 3.3136, and S = 0.0. (Dimensions of all croas sections are cm~1.).
Tﬁe left boundary is reflecting, the right boundary is vacuum, aand we use
the standard S, and §_ quadrature sets. The linea diucont&nuous method,
accelerated by coarse-mesh rebsisnce as encoded in ONETRAN, requires in
excess of 440 iterations to converge to a 10™ pointwise error for this
problem, for any spatial mesh. The number of iterations required by methods
A and B to converge to 10™¢ und 1078 pointwise errors for fine and coarse
meshes are displayed in Table 1. The fine mesh consists of 40, 10, 8, and
30 equaliy-craced cells in the four regions, while the coarse mesh consists
of 1, 1, 2, and 1 cells in the four regions. We observe that for both
methods, both spatial meshes, and both quadrature sets, the number of
iterations required to decrease the pointwise error from 10-4 to 10-8

does pot exceed six; this translates into a spectral radius of 0.215, which
is well within the bound given by Eq. (3.22).

V. DISCUSSION

The full implementation of the acceleration method discussed above will
require generalizations in s2veral directions. First, the extension

to anisotropic scattering must be made. This is straightforward, and one
can use the fact that the acceleration method produces accelerated scalar
fluxes and currents to accelerate the zero-th and first angular moments

in an anisotropic scattering problem. (This procedure gives significant
computational savings in problems for which the anisctropic scattering
kernel is sharply peaked in the forward direction.®"7) Second, the inclusion
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of a linearly-varying rather than constant source in each cell must be made;
this also is straightforward.® Third, the extension to the multigroup

srena must be made, together wiln a proper formulation for the ensuing inner
and outer iteration stretegies. This has been accomplished with the diamond
difference scheme3’'1?  and ve see no conceptual difficulty with the linear
discontinuous scheme.

The exteasiou of this acceleration method to other geometries is anpother
matter. One csn certainly formulate equations such as (3.2) and then compute
angular mcwents and derive a system of acceleration equations, such as (3.11),
but it is not yet clear whether it ic always possible, as it is in slab
geometry, to reduce this system to a computationally manageable form. We
plan to consider this difficulty in detail in our future research efforts.

ACKNOWLEDGEMENTS

I would like to thank Donald R. McCoy for performing the numerical calcula-
tions. This research was performed under the auspices of the U.S. Department
of Energy.

REFERENCES

1 E. M. Gelbard and L. A. Hagemon, Nucl. S8i. Eng., 37, 288 (1969).

2. W. H. Reed, Nucl. Sci. Eng., 45, 245 (1971).

3. R. E. Alcouffe, Nucl. Sci. Eng., 64, 344 (1977).

4. W. F. Miller, Jr., Nucl. Sci., Eng., 65, 226 (1978).

5. J. E. Morel, "A Synthetic Acceleratisn Method for Discrete-Ordinates

Cnlculatlonn with Highly Anisotropic Scattering," Nucl. Sci. Eng.,
to appear.

6. E. W. Larsen, "Unconditionally Stable Diffusion-Synthetic Acceleration
Methods for the Slab Grometry Discrete~Ordinates Equatiuns. Part I:
Theory," Nucl. Sci. Eng., to appesr.

7. D. ®. McCoy and E. W. Larsen, "Unconditionally Stable Diffusion-Synthetic
Accelerat.ion Methods for the Slab Geometry Discrete-~Ordinates Equations.
Part 11: Numerical Results,” Nucl. Sci. Eng., to appear.

8. T. R. Hill, "ONETRAN, A Discrete urdinates Finite Element Code for the

Solution of the One-Dimensional Multigroup Transport Equation," LA-5990-MS,
Los Alamos Scientific Laboratory (1973).

19



9.

10.

R. E. Alcouffe, E. W. Larsen, W. F. Miller, Jr., and B. R. Wienke,
Nucl. Sci. Eng., 71, 111 (1979).

R. D. 0'Dell, F. W. Brinkley, Jr., ana Db. Marr, "User's Manual for
ONEDANT: A Code Package ‘or One-Dimensional, Diffusion-Accelerated,
Neutral Particle Trauspor: " LA-9184-M, Los Alamos National Laboratory
(1982).

20



Method A Method B
Quadrature Set 8‘
“eav., Criterion 10-‘ :l 10-8 10-“ 10-8
e —
Fine Mesh 5 10 5 1 10 5 11
Coarse Mesh 7 12 8 14 10 7 12
Table 1: Number of Iterations Required by
Methods A and B for Convergence
of the Model Shielding Problem
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Figure 1:

w (unaccelerated and accelersted)

versus A for c = 1,
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